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Abstract 

Despite advances, debugging remains a drudgery, 
especially for software without proper documentation. 
Both top-down visualization-based approaches and 
bottom-up programmatic automation can improve this 
process. For a given system under test (SUT), we propose 
a combined method of:  
� Program trace visualization, with capability to zoom 

in to method call details (inputs and outputs) 
� Interactive declaration of observables for the internal 

state of the system  
� Statistical and visual analysis of the collected 

observable data  
� Programmatic declaration of expected behavior of the 

system defined through invariant relationships and 
satisfaction of contracts (Design by Contract) on 
these observables 

� The ability to modify and repeat these steps without 
restarting the SUT  

We report that instrumentation necessary to collect trace 
data is feasible; large amounts of data can be gathered 
without significant performance penalty while the 
visualizer remains responsive to tester interaction.  Our 
personal experience is that the system is very quick to set 
up, faults are discovered quickly, and inefficient 
algorithms (which may produce correct results) become 
obvious through the visualizer. We are setting up human-
interaction experiments to support the claim that our 
approach improves the efficiency of discovery of fault 
origin for a given system failure, compared to using a 
state-of-the-art debugger for Java (Eclipse). 

1. INTRODUCTION 

Today’s debuggers are becoming more powerful with 
many features that decorate the standard debugging 
paradigm. Popular IDEs such as Eclipse and IntelliJ 
IDEA improve efficiency by instant syntax checking, 
incremental compilation, and automated refactoring 
macros, but the debugging paradigm is not improved: At a 
given time, these IDEs still only allow the developer to 
see a single point in the execution time of the program, 
and a single point in the space of source code. This is in 
part a fundamental limitation due to dependence on 
symbolic representations whereas visualization could 
make larger patterns of program behavior visible. 
Bidirectional debugging [1, 2] works by checkpointing 

to save the complete state of the SUT at certain intervals 
during its execution so that the debugger can step back, as 
well as forward, to any point in the execution of the SUT. 

This approach reduces the effort involved in tracing back 
from the manifestation of a failure to the original fault 
that caused the failure. Bidirectional debugging also 
removes the fear of stepping past an important point in the 
execution. For hard-to-replicate internal states of the SUT, 
this fear may cause the tester to take infinitesimally small 
steps forward thereby increasing the total effort expended. 
But, for a large program, the whole internal state of the 

SUT is often too large to save in full. Also, the 
environmental side-effects such as deletion of a file are 
not always reversible. 
Design by Contract (DBC) is a semi-formal approach 

for software requirements specification which is also used 
in creation of automated test oracles [3]. In two controlled 
experiments, Mueller et al. discovered that DBC 
improved cross-developer code reuse, reliability, and 
maintenance efficiency, but the initial development phase 
took longer [4]. Delaying the initial development has the 
disadvantage of delaying user feedback that can be 
utilized to improve the usability of the system. Instead of 
full-coverage starting with the initial development, we 
suggest an approach that allows selective just-in-time 
retrofitting of contracts onto a system developed (or 
otherwise acquired) to have no contracts. This approach 
can improve accuracy in a way similar to how profiling 
can improve efficiency. This way, important gains in 
comprehensibility and maintainability may also be 
achieved without significant start-up costs. 
Execution trace visualizers such as Gammatella [5] use 

information murals [6] – two-dimensional canvases where 
the hue, saturation and brightness information encode 
specific features of the collected data. This allows very 
compact representation of vast amounts of data. 
Our approach combines program understanding through 

the use of an execution trace visualizer with partial test 
automation through DBC-assertions for test oracle 
specification. A tester-selectable subset of the internal 
state information (we focus on data transfers during 
method calls) is stored and failures are highlighted. Our 
system does not require restarting the SUT, and target-
language code is used to define observables and contracts 
during execution. The tester can use the tool to trace the 
execution backwards in time from failure to fault origin. 
 For the visualizer, we aim to minimize the user effort 

and maximize usable visual information, to make larger 
structures evident. Vision as an older evolutionary 
development is a more natural and intuitive way to absorb 
large amounts of data. Symbolic representation is a more 
recent construct. A higher level programming language is 
powerful, and a program demonstrates this power, when 



generalization and abstraction can be used in automation, 
as we attempt to do with our system. 
During debugging, a software engineer constantly 

revises her or his incomplete and possibly wrong internal 
representation of the SUT and hypotheses about both the 
desired and the actual behavior of the SUT. 
 

 
Figure 1. Interactions between a software engineer and 
a SUT, during debugging.  Rectangles represent the 
tangibles and ellipses represent human actions. 

 
With a debugger, much of the internal state of the 

program that is not ordinarily observable or modifiable 
becomes both observable and modifiable. 

2. OUR APPROACH 

Our goal is explicit representation of hypotheses and use 
of visualization and symbolic automation for 
comprehension and verification. We allow tracing the 
SUT while it is running, and the process can be repeatedly 
performed without restarting the SUT. We describe our 
proposed approach in detail in the following sections. 

2.1. Tracing Sessions, Intercepting Method Calls 

For each tracing session, the tester selects the methods 
to trace, starts tracing, interacts with the SUT to recreate 
the erroneous behavior, and stops tracing. This process 
can be repeated without restarting the SUT. Each session 
is recorded in a single execution trace record. 
As a method is usually the smallest unit of interest for 

testing, our current implementation intercepts method 
calls. This means that our tracer can insert code before, 
after, or instead of selected method calls, but not at any 
other point in the program execution. Note that this is not 
merely blackbox testing. Within a method, any call to any 
traced method will also be caught and can be separately 
instrumented. 
Our implementation uses AspectJ to intercept method 

calls. AspectJ [7] is an Aspect-Oriented Programming 
(AOP) framework for Java which can perform load-time 
weaving of bytecode. This means source code is not 
needed; in a library which is shipped without source code, 
we can instrument and trace the methods of the classes in 
the library, including intra-library method calls if desired. 

2.2. Tester-Defined Observables and Method 

Contracts 

The standard observables we save for a method call are 
its parameters, "this" and "that" references, and the return 
value. The “that” reference is the “this” reference of the 
caller. Beyond these standard observables, the tester can 
define tester-defined observables (fig. 2) using arbitrary 
Java code that will be evaluated before (precondition 
observables) and after (postcondition observables) a 
method call. Beyond variables whose values will be 
stored, print statements, loops to display or aggregate 
values of an array, code to pop open a new GUI frame, or 
dialog can also be used. We currently also allow calling 
private methods and accessing private fields of any object. 
We use Beanshell to parse and interpret these expressions 
for each method call, without need for compilation. 
Without expectations, one cannot separate normal from 

unusual behavior. In our system, for each traced method, 
the tester can specify the expected behavior of the method 
in terms of the observables, using "method contracts" that 
consist of DBC pre- and postconditions. We use 
programmatic syntax for these contracts (fig. 2); the tester 
defines one Boolean variable for each expected behavior 
assertion, and declares that it should always hold true. For 
some common tasks, we use macros that expand to code. 

 

 
Figure 2. Method contracts use tester-defined Boolean 

variables to specify the preconditions and the 
postconditions asserted (middle column). 

2.3. Visualizer 

While the SUT is still being traced, summary statistics 
are displayed and updated in real time. Any failure is 
highlighted in red. This allows the tester to see instantly 
that some methods have failed, possibly due to the last 
tester interaction with the SUT. 
The execution trace record visualizer gathers and 

displays individual method calls over time as an execution 
mural. Our visualizer also allows zooming in to a selected 
method in order to inspect the details of that method call. 
In the visualizer, we use discriminable colors from a 

relatively cool color spectrum (blue-cyan-green-yellow 
segment of the spectrum) to depict any method call which 



conforms to expectations. Those method calls which have 
any failed assertions are shown in red. If any call to a 
method has a failed assertion, we also highlight that 
method by displaying a red cross mark next to the method 
signature (figs 3, 4). Execution time axis, displayed as 
tick marks, uses tool tips to interactively display the time. 
 

 

Figure 3. Visualizer displays all method calls traced in 
one session, highlighting failures with red blocks and 

cross marks. 
 

 

Figure 4. Individual passed and failed calls. This is a 
single thread (Java Swing event thread) and the method 

calls (from paintComponent to paintOne to 
calculateView) are obvious in this view. 

 
The visualizer allows the tester to zoom in to these 

problem methods and calls to determine the reason for the 
failure of these assertions. The tester can examine the 
stored values of all the observables for the individual 
passed and failed method calls, inspect the details of any 
observable object (fig. 5), including private fields. 
 

 
Figure 5. Details of a failed method call, with failures 
highlighted in red. Each object shown ("$this", "$that", 
"intvl" and the return value in "$result") can be further 
analyzed in a separate window by clicking on the object's 

string representation. 

2.4. Statistical Analysis and Plots 

The aggregate data gathered for all calls of one method 
are also statistically analyzed: A graphical two-
dimensional table showing statistical covariances between 
all observables highlights strong relationships. 
The tester may click on one cell in the covariance 

matrix to pop up a plot of one observable against another. 
The patterns of correlation can then be further inspected. 
For unexpected data points, the method call that supplied 
the data point can be inspected in detail. Any hypotheses 
about how the program currently behaves or should 
behave can be converted to contracts that define the 
expected relationship between the observables plotted.  

2.5. Goals: Debugging, Understanding, and Testing 

Starting from the goal of finding the cause for a failure, 
the tester can convert the negation of the observed failure 
behavior to an assertion. The visualizer will then highlight 
the method calls that fail when the failure is manifested, 
and by going backwards in time (and possibly by adding 
more assertions for the earlier methods and re-tracing) the 
cause of the failure can be discovered. 
If the SUT is too large or unfamiliar, the tester may 

temporarily switch to the goal of understanding the 
system and declare more observables in order to discern 
the patterns in the big picture formed by the visualizer, 
correlation matrix, and plots. 
As DBC can be used as an automated testing oracle, 

contracts can also be utilized to test parts of a system 
within the framework of the integrated system. This 
would exercise the input state space of each method 
according to the common use of that method. For more 
thorough testing of a method in isolation, the interactively 
discovered contracts of that method can be exported. 

3. EXPERIMENTS 

3.1. Performance Degradation 

For collecting and visualizing moderate to large 
amounts of data, our implementation does not cause a 
significant degradation in the SUT performance. Using a 
Mac Mini with G4 1.25 GHz PPC CPU and 512 MB 
memory, for a system trace of 11728 method calls 
collected in 20.8 seconds, we observed a 19.2% 
performance degradation. At five times this rate, 55385 
method calls could be recorded in 19.9 seconds with 
35.5% performance degradation.  This is not a particularly 
fast system, and yet the SUT remained quite usable. For 
comparison, moving the mouse to traverse the diagonal 
span of the screen in two seconds causes about 30% 
performance degradation. The resulting trace mural was 
quite responsive in the first case of about 12000 method 
calls, but a little lagging in the second case with about 
55000 calls. We use AspectJ for interception and 
reflection-based interpretation of Beanshell for contract 
evaluation. In a commercial system, to decrease the 



overhead, JVMPI interface hooks and incremental 
compilation would be preferable. 

3.2. Future Experiments 

We are soliciting human subjects (software engineers 
and students) for randomized controlled experiments to 
test the utility of our approach. Subjects will be given a 
short hands-on introduction to using our visualizer. Each 
subject will be asked to discover and fix two bugs in one 
program using Eclipse, and two other bugs in another 
program using our visualizer. To eliminate any 
dependency on individual variations of ability, the total 
time taken for all four bugs will be used to normalize the 
time each subject took for each bug. Also, each subject 
will be asked to complete a very short questionnaire about 
comparative ratings of these two approaches, and which 
features of the visualizer were most useful / hard to use. 

3.3. A Personal Observation 

The first author has been using this system to discover 
and patch (temporarily fix) bugs in his own system for a 
while. We report on one interesting session here. 
In one portion of the visualizer, a method traverses 

directory structures and tries to find Java source code 
automatically, using a simple heuristic. Using the class 
path as the starting point, this algorithm first searches for 
an x.java file in the directory where the corresponding 
x.class file resides. If this fails, parent and sibling 
directories, and farther directories are traversed, with each 
next traversal covering an exponentially larger area. 
There was a bug in this method which was not obvious 

upon inspection of the source code. 
Using AOP, it was very easy to intercept all the related 

methods in the enclosing class. Setup was a snap, 
requiring only two lines of AOP code to be modified, to 
change the definition of a pointcut, and to call the faulty 
method from the tracer. The visualization and ability to 
zoom in to method call details helped discover the source 
of the bug in about half an hour. The bug was then 
corrected, and the program ran correctly. 
But there was something seriously out of place. The 

visualizer showed that a very large number of method 
calls were taking place (fig. 6). The stack of directories to 
traverse was being scanned in reverse order (due to 
stack/queue structure usage): The farthest relative (third 
degree parent and all its descendents) was searched first. 
The method still found the source file, but after much 
unnecessary wasted effort. Fixing this bug was also 
simple once the problem was discovered. 
 

 
Figure 6.  File search algorithm gave correct result but 

there was much unnecessary disk access and computation. 

The visualizer highlighted a problem of inefficiency, 
even after the program was correct (had no bug), and 
despite the fact that no such problem was sought after. 
Debuggers allow precise, narrow, deep analysis and full 
control, but they do not collect information from multiple 
calls of the same method. Because of this, no debugger 
today can make such large scale patterns of behavior 
obvious. 

4. CONCLUSION 

We have proposed a new methodology that integrates 
visual and symbolic approaches to program understanding, 
testing, and debugging. Our experience shows that an 
execution trace visualizer can make high-level patterns of 
faulty behavior obvious. Using our approach, we can run 
tests without restarting the SUT, access a wealth of 
information about its internal state, and use code to define 
observables and DBC contracts to specify the expected 
behavior of the SUT. We believe this approach makes the 
debugging process more efficient as compared to a state-
of-the-art debugger (Eclipse). We are setting up human-
subject experiments to test the validity of this claim. 
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